Maximum Domination Problem

نویسندگان

  • Eiji Miyano
  • Hirotaka Ono
چکیده

We consider new variants of the vertex/edge domination problems on graphs. A vertex is said to dominate itself and its all adjacent vertices, and similarly an edge is said to dominate itself and its all adjacent edges. Given an input graph G = (V,E) and an integer k, the k-Vertex (k-Edge) Maximum Domination (k-MaxVD and k-MaxED, respectively) is to find a subset DV ⊆ V of vertices (resp., DE ⊆ E of edges) with size at most k that maximizes the cardinality of dominated vertices (resp., edges). In this paper, we first show that a simple greedy strategy achieves an approximation ratio of (1 − 1/e) for both k-MaxVD and k-MaxED. Then, we show that this approximation ratio is the best possible for k-MaxVD unless P = NP. We also prove that, for any constant ε > 0, there is no polynomial time 1303/1304+ε approximation algorithm for k-MaxED unless P = NP. However, if k is not larger than the size of the minimum maximal matching, k-MaxED is 3/4-approximable in polynomial time. keywords: maximum domination, vertex domination, edge domination, approximability, inapproximability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity and approximation ratio of semitotal domination in graphs

A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ andevery vertex in $S$ is within distance 2 of another vertex of $S$. Thesemitotal domination number $gamma_{t2}(G)$ is the minimumcardinality of a semitotal dominating set of $G$.We show that the semitotal domination problem isAPX-complete for bounded-degree graphs, and the semitotal dominatio...

متن کامل

Algorithms with large domination ratio

Let P be an optimization problem, and let A be an approximation algorithm for P . The domination ratio domr(A,n) is the maximum real q such that the solution x(I) obtained by A for any instance I of P of size n is not worse than at least a fraction q of the feasible solutions of I. We describe a deterministic, polynomial time algorithm with domination ratio 1−o(1) for the partition problem, and...

متن کامل

Algorithmic Aspects of Semitotal Domination in Graphs

For a graph G = (V,E), a set D ⊆ V is called a semitotal dominating set of G if D is a dominating set of G, and every vertex in D is within distance 2 of another vertex of D. The Minimum Semitotal Domination problem is to find a semitotal dominating set of minimum cardinality. Given a graph G and a positive integer k, the Semitotal Domination Decision problem is to decide whether G has a semito...

متن کامل

Polynomial-time Algorithms for Weighted Efficient Domination Problems in AT-free Graphs and Dually Chordal Graphs

An efficient dominating set (or perfect code) in a graph is a set of vertices the closed neighborhoods of which partition the vertex set of the graph. The minimum weight efficient domination problem is the problem of finding an efficient dominating set of minimum weight in a given vertex-weighted graph; the maximum weight efficient domination problem is defined similarly. We develop a framework...

متن کامل

A Review on Domination in Planar Graphs with Small Diameter

Domination and its variations in graphs are now well studied. However, the original domination number of a graph continues to attract attention. Many bounds have been proven and results obtained for special classes of graphs such as cubic graphs and products of graphs. On the other hand, the decision problem to determine the domination number of a graph remains NP-hard even when restricted to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011